

Catalysis Today 126 (2007) 81-89

Combined in situ FT-IR and TRM analysis of the NO_x storage properties of Pt-Ba/Al₂O₃ LNT catalysts

F. Frola^a, F. Prinetto^{a,*}, G. Ghiotti^a, L. Castoldi^b, I. Nova^b, L. Lietti^b, P. Forzatti^b

^a Dipartimento di Chimica IFM, Università di Torino, and INSTM Consortium,
 UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
^b Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta",
Centro NEMAS-Nano Engineered Materials and Surfaces Politecnico di Milano,
 Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Available online 5 December 2006

Abstract

The storage of NO_2 and NO/O_2 in the presence and in the absence of CO_2 was investigated at 350 °C on Pt-Ba/Al₂O₃ LNT catalysts and on the reference Ba/Al₂O₃ system, by coupling *in situ* FT-IR spectroscopy and transient response method (TRM). Experiments were performed by admitting NO_2/CO_2 or $NO/O_2/CO_2$ mixture (CO_2/NO_x ratios in the range 1–7) or, in alternative, by admitting NO_2 or NO/O_2 on catalysts previously saturated by flowing CO_2 .

In the case of NO₂/CO₂ adsorption, it was found that NO₂ was efficiently stored as nitrate species according to a disproportion reaction, which occurs with evolution of NO, as in the absence of CO₂.

In the case of $NO/O_2/CO_2$ adsorption it was confirmed that two pathways operated simultaneously as in the absence of CO_2 : the "nitrite route", involving the initial formation of surface nitrite and their subsequent evolution to nitrates, and the "nitrate route", involving NO oxidation to NO_2 over PC1 and its subsequent adsorption on PC2 in the form of nitrates. The presence of PC3 inhibits to some extent the "nitrite route", whereas the "nitrate route" proceeds as in the absence of PC3.

© 2006 Elsevier B.V. All rights reserved.

Keywords: NO_x storage; Lean NO_x Trap; Pt-Ba/Al₂O₃; Transient response method; FT-IR spectroscopy; CO₂

1. Introduction

The need of developing new catalytic systems efficient in the reduction of NO_x under lean conditions is a current challenge. An interesting solution is represented by the so-called " NO_x storage-reduction catalysts" or "Lean NO_x Traps" (LNT), constituted by a NO_x -storage component (typically an alkaline or earth-alkaline metal oxide) and by a noble metal (Pt) which operates the NO_x reduction [1–4]. Several papers have been recently published on these catalytic systems, and both the storage and the reduction phases have been investigated [5–8], although some mechanistic aspects still remain controversial. In this frame, an extensive investigation was carried in our labs, with the aim of elucidating the NO_x -storage mechanism on Pt-Ba/Al₂O₃ catalysts. *In situ* FT-IR spectroscopy and the transient

response method (TRM) proved to be very useful techniques to gain complementary information on surface species and gas phase composition, which allowed the proposal of a novel pathway for NO_x storage upon admission of NO/O₂ mixtures [9–11]. It was indeed shown that the NO/O₂ storage proceeds through two parallel routes: (i) the "nitrite route", which implies NO storage on Ba neighbouring Pt sites in the form of nitrite ad-species that are then progressively oxidized to nitrates; (ii) the "nitrate route", implying NO oxidation to NO₂ on Pt sites, followed by NO₂ disproportion on Ba sites with formation of nitrates and NO release in the gas phase.

In order to better approach the real working conditions of the LNT catalysts in the engines, and to understand if the presence of CO_2 could alter the proposed storage pathways, this paper addresses the effects of the presence of CO_2 on the efficiency of the NO_x storage and on the NO_x storage mechanisms, again by coupling *in situ* FT-IR spectroscopy and TRM technique over model Pt-Ba/Al₂O₃ catalysts and, for comparative purposes, over the binary Ba/Al₂O₃ reference sample.

^{*} Corresponding author. Tel.: +39 0116707539; fax: +39 0116707855. E-mail address: federica.prinetto@unito.it (F. Prinetto).

2. Experimental

2.1. Materials and techniques

Homemade Pt-Ba/Al₂O₃ catalysts (1–16/100) were prepared by impregnation of γ -alumina in two sequential steps as follows. A powder γ -Al₂O₃ carrier (Versal 250 from La Roche Chemicals, surface area of 200 m²/g and pore volume of 1.2 cm³/g) was at first impregnated with a solution of Pt(NH₃)₂(NO₂)₂ (Strem Chemicals, 5% Pt in ammonium hydroxide) with an appropriate concentration so as to yield 1 wt% Pt metal loading. After drying in air for 12 h at 80 °C and calcination at 500 °C for 5 h, batches of this sample were impregnated with a Ba(CH₃COO)₂ solution (Strem Chemicals, 98.5%) so as to yield Ba loading of 16 wt%. The impregnated sample were initially dried for 12 h at 80 °C and then calcined at 500 °C for 5 h.

For comparative purposes, the reference binary systems, Pt/ Al_2O_3 (1/100) and Ba/Al_2O_3 (16/100) were also prepared using the same precursors and procedures.

Surface area and pore size distribution were determined by N_2 adsorption–desorption at 77 K with the BET method using a Micromeritics TriStar 3000 Instrument.

The Pt dispersion was estimated from hydrogen chemisorption at 0 $^{\circ}$ C after reduction in H₂ at 300 $^{\circ}$ C using a TPD/R/O 1100 ThermoElectron Corporation Instrument.

XRD spectra were collected on powder samples calcined at 500 °C with a Brüker D8 Advanced Instrument equipped with graphite monochromator on the diffracted beam.

2.2. Study of the NO_x storage

The adsorption of NO_x on Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ under transient conditions has been investigated by *in situ* FT-IR spectroscopy and by the transient response method. In both cases, NO_x storage data reported were obtained on samples that were fully conditioned by performing few previous storage–regeneration cycles, consisting of heating in NO_2 at 350 °C and desorption at 600 °C [12].

Absorption/transmission IR spectra were run on a Perkin-Elmer FT-IR System 2000 spectrophotometer equipped with a Hg-Cd-Te cryo-detector, working in the range of wavenumbers 7200–580 cm⁻¹ at a resolution of 1 cm⁻¹ (number of scans \sim 10). For IR analysis powder samples were compressed in selfsupporting discs (10 mg cm⁻²) and placed in a commercial heatable stainless steel cell (Aabspec) allowing thermal treatments in situ under vacuum or controlled atmosphere and the simultaneous registration of spectra at temperatures up to 600 °C. Pellets were fully conditioned as previously described, then heated in dry O₂ at 600 °C, cooled down to 350 °C and evacuated at the same temperature. NO_x storage experiments were performed by admitting NO2 or freshly prepared NO/O₂ 1:4 mixtures (NO freshly distilled before use) at 350 °C in the presence of CO₂ (CO₂/NO_x ratios in the range 1-7). All gases were from Praxair. IR spectra were recorded at the same temperature (350 °C) at increasing exposure times to the various gaseous mixtures.

For comparative purposes, the adsorption of CO_2 at 350 °C at increasing pressure and exposure time in the absence of NO_x was also studied.

In another series of IR experiments, NO_2 or NO/O_2 adsorption was carried out at 350 °C on samples previously saturated by flowing CO_2 and then evacuated at the same temperature. In all experiments, the catalyst regeneration (*i.e.* the removal of the stored NO_x) was accomplished by treatment with H_2 at 350 °C or, in alternative, by desorption at increasing temperature.

For TRM experiments a flow micro-reactor system made of a quartz tube (7 mm i.d.) inserted into an electric furnace driven by a PID temperature controller/programmer was used. The temperature of the catalyst was measured and controlled by a K-type thermocouple (o.d. = 0.5 mm) directly immersed in the catalyst bed. The flow rate of the feed gases was measured and controlled by mass-flow controllers (Brooks 5850 TR), and the gases were mixed in a single stream before entering the reactor. Two four-port valves were used to perform the abrupt switches in the inlet gas phase composition. The reactor outlet was directly connected to a mass spectrometer (Balzers QMS 200); care was taken to minimize all possible dead volumes in the lines before and after the reactor and in eliminating pressure and flow changes upon switching of the feed gases. The following mass-to-charge (m/e) ratios were used to monitor the concentration of products and reactants: 18 (H₂O), 28 (N₂ or CO), 30 (NO), 32 (O₂), 44 (N₂O or CO₂), and 46 (NO₂). The mass-spectrometer data were quantitatively analyzed using the fragmentation patterns and the response factors determined experimentally from calibration gases. A gas chromatograph (HP 6890) equipped with a Poraplot Q and a 5 Å molecular sieve capillary column was also used for the analysis of CO₂, N₂O, and H₂O, and of O₂, N₂, and CO, respectively.

In a typical experiment, 60 mg of catalyst sample were loaded in the reactor and heated at 350 °C in He or He + 3% O_2 (100 N cm³/min at Standard Temperature Pressure, STP). After stabilisation of the mass-spectrometer signals, a rectangular step feed of NO (1000 ppm in He + O_2) or NO₂ (1000 ppm in He) was admitted at constant temperature. The NO_x storage was allowed to proceed up to catalyst saturation; then the inlet NO_x concentration was stepwise decreased to zero. The subsequent catalyst regeneration was accomplished by TPD: the catalyst was cooled to room temperature in He (flow rate of 100 cm³/min) and then linearly heated to 600 °C at 10 °C/min, followed by a hold at 600 °C.

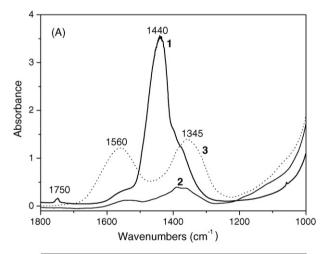
Analogous TRM experiments were carried out in the presence of CO_2 (0.3%, v/v) at 350 °C. Finally, for comparative purposes, NO_2 or NO/O_2 adsorption at 350 °C on samples previously saturated by flowing CO_2 (0.3%, v/v) was also studied.

3. Results and discussion

3.1. Catalyst characterization

The main chemical, textural and morphological features of the Pt-Ba/Al₂O₃ catalyst and of the binary Pt/Al₂O₃ and Ba/ Al₂O₃ reference materials are reported in Table 1. Further

Table 1 Chemical composition, textural and morphological features of the fresh materials


Sample	Pt content (%, w/w)	Ba content (%, w/w)	Surface area (m²/g)	Pore volume (cm ³ /g)	Pt dispersion (%)	Crystalline phases
Pt/Al ₂ O ₃	0.99	0	186	1.02	82	γ-Al ₂ O ₃ ^a
Pt-Ba/Al ₂ O ₃	0.83	16.5	137	0.81	71	γ-Al ₂ O ₃ ^a , BaCO ₃ ^b
Ba/Al ₂ O ₃	0	16.7	133	0.82	_	γ-Al ₂ O ₃ ^a , BaCO ₃ ^b

^a γ-Al₂O₃, JCPDS no. 10-425.

details on the characterization of the samples can be found in previous papers [9,12,13]. Quantitative analysis of the X-ray diffractograms indicated that in fresh Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ samples, nearly 30% of Ba is present as crystalline $BaCO_3$, the remaining fraction being likely present as highly dispersed Ba carbonate or Ba oxide.

The presence of bulky $BaCO_3$ on the fresh Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ samples is also clearly revealed by IR bands at 1440 cm^{-1} with shoulders at 1550, 1400 and 1370 cm⁻¹ (Fig. 1A curve 1 for $Pt-Ba/Al_2O_3$ sample) [14].

After few cycles of NO_x adsorption at 350 °C and regeneration by heating at 600 °C, both in IR spectra

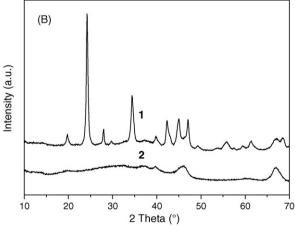


Fig. 1. (Section A) Absorbance FT-IR spectra recorded at 350 $^{\circ}$ C of fresh Pt-Ba/Al₂O₃ catalyst (curve 1); thereafter submitted to conditioning treatment (curve 2); and after the subsequent admission of CO₂ at saturation (20 mbar, curve 3). (Section B) XRD patterns of fresh Pt-Ba/Al₂O₃ catalyst (curve 1); thereafter submitted to conditioning treatment (curve 2).

(Fig. 1A) and in XRD patterns (Fig. 1B) the features due to crystalline BaCO₃ disappeared, while no new crystalline Ba phases were detected. This accounts for an almost complete evolution of BaCO₃ to Ba(NO₃)₂, which was then decomposed into a dispersed nanosized BaO phase [18–20]. Notably, this evolution occurs at temperatures markedly lower than those required for the thermal decomposition of bulk BaCO₃ [12,15]. In agreement, TRM data collected during the initial NO_x storage–regeneration cycles onto fresh catalysts showed a significant evolution of CO₂ [21]. After three cycles CO₂ is no more detected at the reactor outlet, suggesting that the transformation of barium carbonate into barium oxide is almost complete. Samples were thus hereafter conditioned by performing few NO_x adsorption–regeneration cycles before studying NO_x storage.

3.2. Study of NO_x storage in the presence of CO_2

3.2.1. Adsorption of CO₂

In order to point out the effect of CO_2 on the NO_x storage, we have firstly studied the adsorption of CO_2 in the absence of NO_x on conditioned Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ catalysts, at increasing pressure and contact time, at the same temperature (350 °C) used in NO_x adsorption experiments.

A relevant point is that surface species formed upon CO_2 adsorption exhibit spectral features completely different from those of crystalline $BaCO_3$ present on the fresh sample (compare curves 1 and 3 in Fig. 1A).

To better appreciate the spectral features upon CO_2 adsorption, in Fig. 2 we have reported the difference spectra, *i.e.* after subtraction of the spectrum before CO_2 admission. Absorptions at 1560, 1345 and 1060–1050 cm⁻¹ were observed to form upon CO_2 admission, which are characteristic of surface bidentate carbonate species adsorbed on the Ba phase ($\nu_{C=O}$, ν_{OCO} asym and ν_{OCO} sym, respectively) [16]. Notably, no surface species typical of CO_2 adsorption on the alumina support were detected, such as organic-like carbonates (observed at 1860–1780, 1200–1180 cm⁻¹ in the case of the Pt/Al₂O₃ reference sample, spectrum not reported) and hydrogen carbonates (observed at 1680–1640, 1480, 1240 cm⁻¹ on Pt/Al₂O₃) [17]. This accounts for an extensive spreading of the barium oxide phase over the support, as previously suggested [12].

Carbonate species formed on Ba/Al₂O₃ and Pt-Ba/Al₂O₃ were similar, except for the presence of an additional component at 1445 cm⁻¹ in the case of the binary system, due to small amounts of monodentate species.

Finally, carbonate species formed upon CO₂ adsorption exhibited a moderate thermal stability, being almost completely

^b BaCO₃ orthorombic, JCPDS no. 5-378, and monoclinic, JCPDS no. 78-2057.

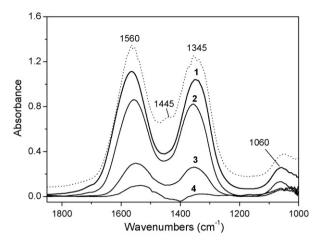


Fig. 2. FT-IR spectra of Pt-Ba/Al $_2$ O $_3$ catalyst upon admission of 20 mbar of CO $_2$ at 350 °C (curve 1) and subsequent evacuation at 350, 450, 550 °C (curves 2, 3 and 4, respectively). For comparison, admission of 20 mbar of CO $_2$ at 350 °C on Ba/Al $_2$ O $_3$ (dotted line). Spectra have been reported after subtraction of the spectrum before CO $_2$ admission.

removed by evacuation at 550 $^{\circ}$ C, as seen from spectra in Fig. 2 and from Fig. 3, where the integrated intensities of the overall absorption in the range 1700–1100 cm⁻¹ have been reported as a function of the evacuation temperature.

All these findings mean that, once decomposed by the conditioning treatment, the crystalline BaCO₃ phase present on the fresh samples is not readily restored by CO₂ interaction.

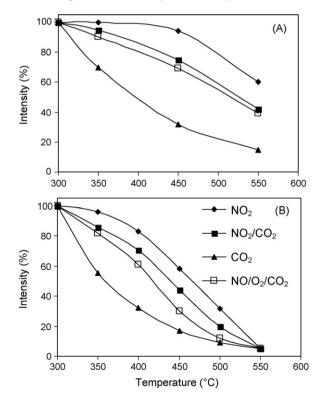


Fig. 3. Thermal stability of species formed upon adsorption of NO₂ (\spadesuit), CO₂ (\spadesuit), NO₂/CO₂ 1:5 mixtures (\blacksquare), NO/O₂/CO₂ 1:4:5 mixtures (\square) on Ba/Al₂O₃ and Pt-Ba/Al₂O₃ samples (Sections A and B, respectively), evaluated by the integrated intensities of the IR absorptions in the 1700–1100 cm⁻¹ range *vs.* the evacuation temperature. The integrated intensity of the bands present at 300 °C has been put equal to 100%.

3.2.2. Adsorption of NO_2 in the presence of CO_2

In Fig. 4A the IR difference spectra obtained after admission of a NO₂/CO₂ 1:5 mixture at 350 °C on Pt-Ba/Al₂O₃ catalyst are compared with those obtained upon admission of the single gases, NO₂ and CO₂, in the same conditions of temperature, partial pressure and exposure time (2 min). It can be easily noted that the surface situation reached upon admission of the NO₂/CO₂ mixture (Fig. 4A, curve 1) closely resembles that obtained upon admission of NO₂ in the absence of CO₂ (Fig. 4A, curve 2). In particular, in both cases mainly nitrates are present at the catalyst surface, primarily of the ionic type (1410, 1320 and 1020 cm⁻¹) and in minor amounts bridging species (1550 cm⁻¹) [9,12]. In both cases nitrite formation is not observed.

Upon admission of the NO_2/CO_2 mixture, only small amounts of carbonates are formed, in spite of the large amounts of CO_2 in the gas phase, as indicated by the weak intensity of the mode at $1060 \, \mathrm{cm}^{-1}$. Note incidentally that the analysis of IR modes at wavenumbers lower than $1100 \, \mathrm{cm}^{-1}$ can be useful to solve the problem of the heavy superposition of vibrational

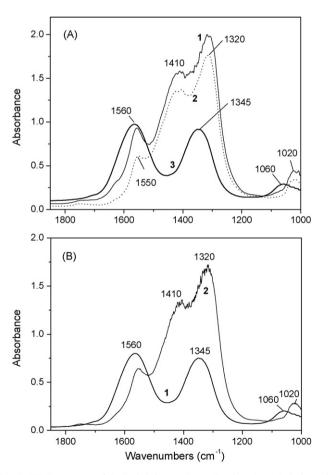


Fig. 4. FT-IR spectra of Pt-Ba/Al $_2O_3$ catalyst. (Section A) Admission of 24 mbar of NO $_2$ /CO $_2$ 1:5 mixture at 350 °C (curve 1) after 2 min of contact; for comparison, admission of 4 mbar of NO $_2$ (curve 2) and of 20 mbar of CO $_2$ (curve 3) at the same temperature and contact time. (Section B) Admission of 20 mbar of CO $_2$ at 350 °C and subsequent evacuation at 350 °C (curve 1); subsequent admission of 4 mbar NO $_2$ at 350 °C (curve 2) after 2 min of contact. Spectra have been reported after subtraction of the spectrum before gas admission.

modes of ${\rm CO_3}^{2-}$ and ${\rm NO_3}^-$ in the 1700–1200 cm $^{-1}$ region. Indeed, carbonates exhibit the $\nu_{\rm OCO}$ sym mode at 1060–1050 cm $^{-1}$, while the analogous $\nu_{\rm ONO}$ sym mode of nitrates is shifted at 1030–1020 cm $^{-1}$.

Similar results were obtained for the binary Ba/Al₂O₃ sample (spectra not reported).

A good tool to evaluate the relative amounts of surface carbonate and nitrate species formed upon admission of the NO₂/CO₂ mixture is the analysis of the thermal stability of the surface species, especially at temperatures around 450 °C. Indeed it is noted from Fig. 3 that after admission of the NO₂/CO₂ mixture and subsequent evacuation at 450 °C, the overall intensity of the envelope of bands at 1700–1100 cm⁻¹ decreased of around 25% and 45% for the binary and the ternary systems, respectively. These intensity decreases are quite similar to those obtained in the case of admission of pure NO₂ (around 10 and 40% for the binary and the ternary systems, respectively). As seen, nitrates showed a lower stability in the case of the ternary system, which has been previously ascribed to the catalytic effect of Pt in nitrate decomposition [12].

At variance, surface carbonates formed upon admission of pure $\rm CO_2$ showed a moderate stability, 70–80% being already desorbed upon evacuation at 450 °C. This further evidences that mainly nitrates are formed at the catalyst surface when $\rm NO_2$ is admitted in the presence of $\rm CO_2$.

In another series of experiments, NO₂ was admitted on the catalyst surface, which had been previously saturated by CO₂ at 350 °C and thereafter evacuated at the same temperature (Fig. 4B for Pt-Ba/Al₂O₃ sample). It appears that pre-existing surface carbonates were almost completely displaced by NO₂, as indicated by the marked decrease of the bands at 1560 and 1060 cm⁻¹, while nitrate formation proceeded. After few minutes of contact the situation was thus similar to that obtained upon NO₂ adsorption on the clean surface, *i.e.* presence of nitrates, primarily of the ionic type and in minor amounts of the bridging type, no nitrite formation.

Similar results were obtained for the binary Ba/Al₂O₃ sample (spectra not reported).

In agreement with IR data, TRM runs performed on the ternary $Pt-Ba/Al_2O_3$ catalyst (Fig. 5) showed that the adsorption capacity upon NO_2 adsorption over the clean and over the CO_2 pre-saturated surfaces are similar and only slightly decreased in the case of the NO_2/CO_2 mixture (see also Table 2).

From Fig. 5, it clearly appears that in all cases NO_2 adsorption is accompanied by NO evolution. As discussed elsewhere [9,10] NO formation is related to the occurrence of the following NO_2 dismutation reaction:

$$BaO + 3NO_2 \rightarrow Ba(NO_3)_2 + NO \tag{1}$$

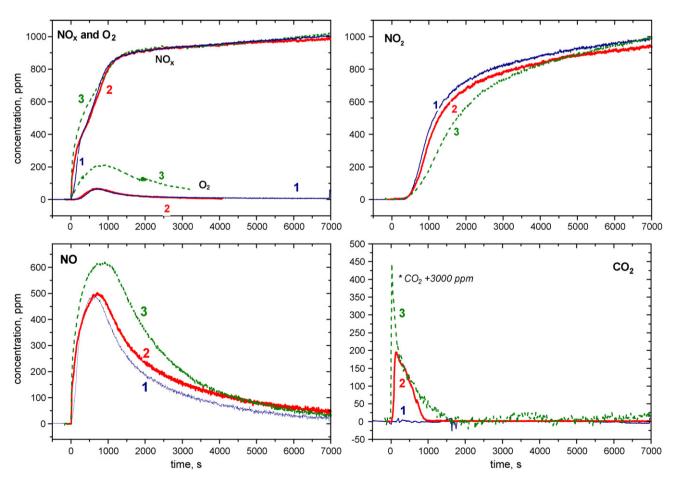


Fig. 5. NO_x , NO_2 , NO, CO_2 outlet concentration vs. time on Pt-Ba/Al₂O₃ catalyst determined by TRM experiments at 350 °C upon admission of NO_2 (curve 1), of NO_2 on CO_2 pre-covered sample (curve 2) and of NO_2/CO_2 mixture (curve 3).

Table 2 Amounts of NO_x adsorbed and CO_2 released during TRM experiments on Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ catalysts

Experiment	NO ₂ storage			NO/O ₂ storage				
	NO _x adsorbed (mol/g cat) up to surface saturation		CO ₂ released (mol/g cat)		NO _x adsorbed (mol/g cat) up to surface saturation		CO ₂ released (mol/g cat)	
	Pt-Ba/Al ₂ O ₃	Ba/Al ₂ O ₃	Pt-Ba/Al ₂ O ₃	Ba/Al ₂ O ₃	Pt-Ba/Al ₂ O ₃	Ba/Al ₂ O ₃	Pt-Ba/Al ₂ O ₃	Ba/Al ₂ O ₃
NO _x	1.02E-03	1.53E-03	_	_	4.97E-04	2.88E-04	_	_
NO_x on CO_2 pre-covered samples	1.06E-03	0.86E-04	1.33E-04	1.68E-04	4.83E-04	1.19E-04	1.24E-04	-
NO _x /CO ₂ mixtures	0.90E-03	1.21E-03	2.87E - 04	0.742E-04	4.63E-04	1.04E-04	2.02E-04	-

On the ternary system, NO can be also originated by NO_2 decomposition on Pt sites:

$$NO_2 \rightarrow NO + \frac{1}{2}O_2 \tag{2}$$

As a matter of facts, O_2 evolution is observed at the reactor outlet in the case of Pt-Ba/Al₂O₃ catalyst.

It is noted from Fig. 5 that the ratio between NO_2 and NO evolved at the reactor outlet is similar in the case of the NO_2 admission on the clean and on the pre-carbonated surfaces and slightly lower in the case of the NO_2/CO_2 mixture (traces 3). This can be ascribed to the fact that, owing to the competition

(although weak) between CO_2 and NO_2 , NO_2 can be slightly more efficiently decomposed to NO and O_2 by Pt according to reaction (2). This suggestion is supported by the higher O_2 evolution in the case of the NO_2/CO_2 mixture.

Finally, during the first stages of NO₂ storage, when CO₂ was present either in the gaseous mixture or pre-adsorbed on the catalyst surface, a CO₂ release was also observed (Fig. 5 and Table 2), indicating a displacement of surface carbonates upon NO₂ adsorption, as already pointed out by FT-IR data.

A similar behaviour was found for the binary Ba/Al₂O₃ sample as well (quantitative data reported in Table 2); however in this case no NO₂ decomposition has been observed, as expected.

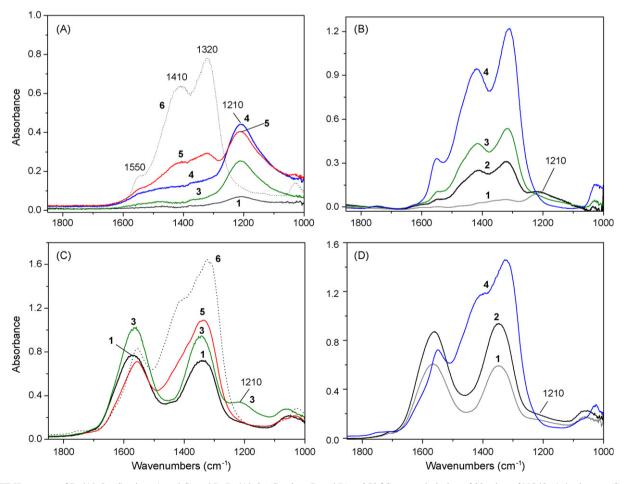


Fig. 6. FT-IR spectra of Ba/Al₂O₃ (Sections A and C) and Pt-Ba/Al₂O₃ (Sections B and D) at 350 °C upon admission of 20 mbar of NO/O₂ 1:4 mixtures (Sections A and B) or of 36 mbar of NO/O₂/CO₂ 1:4:5 mixtures (Sections C and D) at increasing contact time: 10 s (curve 1), 30 s (curve 2), 1 min (curve 3), 5 min (curve 4), 10 min (curve 5), 30 min (curve 6). For sake of clarity some spectra are omitted. Spectra have been reported after subtraction of the spectrum before gas admission.

The results of TPD experiments (data not reported) following the TRM runs with NO_2/CO_2 showed an evolution of CO_2 , along with NO, O_2 and NO_2 , accounting for the presence of small amounts of carbonates not displaced during NO_2 storage. The temperature thresholds of CO_2 and NO_x desorption agree with the thermal stability of carbonates and nitrates observed by FT-IR.

It is worth of note that no release of CO₂ was observed during the TPD runs after TRM experiments with NO₂ on clean or pre-carbonated surfaces, indicating that in this case Ba carbonate had been completely displaced by nitrate species during the storage phase, as already suggested by IR data.

All the above findings indicate that at the working temperature CO_2 weakly competes with NO_2 for the surface oxygen sites, so that NO_2 storage can proceed through the "nitrate route" [9], leading to nitrate formation and NO release in the gas phase according to the disproportionation reaction (1), as in the absence of CO_2 .

As said, very similar results are obtained for Pt-Ba/Al₂O₃ and Ba/Al₂O₃ catalysts, indicating that Pt is not required to catalyze NO₂ storage through "nitrate route". Obviously, Pt is necessary to reoxidize NO released from reaction (1) to NO₂.

3.2.3. Adsorption of NO/O₂ in the presence of CO_2

IR spectra upon admission of NO/O₂ mixtures at 350 °C on Ba/Al₂O₃ and Pt-Ba/Al₂O₃ catalysts (Fig. 6A and B, respectively) in the absence of CO₂ are firstly examined. In both case ionic nitrite species (1210 cm⁻¹) were formed at low exposure times and then evolved to nitrates, primarily of the ionic type (1410, 1325 and 1030-1020 cm⁻¹) and in minor amounts bridging species (1550 cm⁻¹). On the binary system (Fig. 6A) nitrites reached their maximum intensity after 5 min of contact and were still detectable at higher contact time, while nitrates were formed in moderate amounts. Only after 30 min of contact (Fig. 6A, curve 6) nitrites were no more detected and nitrates were present in significant amounts. Conversely, on the ternary system (Fig. 6B) nitrites reached their maximum intensity already after 30 s of contact and were completely disappeared thereafter, so that after few minutes of contact only nitrates were present on the catalyst surface, similar in nature and amounts to those obtained upon NO₂ admission.

When CO_2 was added to the NO/O_2 mixture (Fig. 6C and D for the binary and ternary samples, respectively) bidentate carbonates were immediately formed along with nitrite species (curves 1). On increasing the contact time, carbonates were partially displaced, as indicated by the intensity decrease of the bands at 1560 and 1060 cm⁻¹, while nitrites evolved to nitrate species (curve 2–6).

Notably, on the binary system (Fig. 6C) large amounts of carbonates were still present at the surface after several minutes of exposure to the NO/O₂/CO₂ mixture (see, *e.g.* curve 5 of Fig. 6C). Conversely, on the ternary system (Fig. 6D) a large fraction of carbonates initially formed was displaced upon NO_x storage, so that after few minutes of exposure to the NO/O₂/CO₂ mixture the amount of nitrates stored was comparable to that obtained in the absence of CO₂.

A significant finding is that, both on the binary and on the ternary systems, the amount of surface nitrites present at each contact time is lower in the presence than in the absence of CO_2 (compare Fig. 6C with A and Fig. 6D with B). This indicates that CO_2 competes for the surface oxygen sites able to give nitrites.

Also in this case it is possible to obtain a rough evaluation of the relative amounts of carbonates and nitrates by examining the stability of surface species upon evacuation at 450 $^{\circ}$ C. As seen from Fig. 3, both on the binary and on the ternary systems the stability of species formed upon admission of the NO/O₂/CO₂ mixture is roughly intermediate between those of species formed upon admission of NO/O₂ on one hand and of CO₂ on the other hand.

In another series of experiments, NO/O_2 was admitted on the catalyst surface previously saturated by CO_2 at 350 °C and thereafter evacuated at the same temperature (Fig. 7). Both on Ba/Al_2O_3 and $Pt-Ba/Al_2O_3$ samples carbonates initially present were progressively displaced on increasing the exposure time to the NO/O_2 mixture. In parallel, nitrites were formed at low contact time and then evolve to nitrates. As in the case of NO/O_2 adsorption on the clean surfaces, nitrites were still

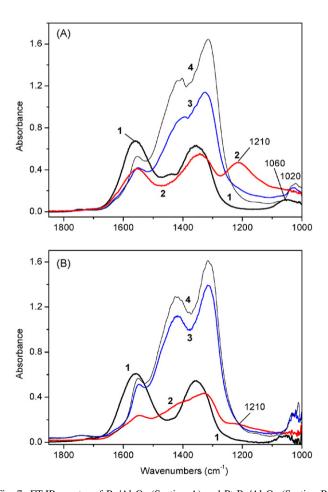


Fig. 7. FT-IR spectra of Ba/Al_2O_3 (Section A) and $Pt-Ba/Al_2O_3$ (Section B) after admission of 20 mbar of CO_2 at 350 °C and subsequent evacuation at 350 °C (curve 1); subsequent admission of 20 mbar of NO/O_2 1:4 mixtures at 350 °C after 1, 5 and 10 min of contact (curves 2, 3 and 4, respectively). Spectra have been reported after subtraction of the spectrum before gas admission.

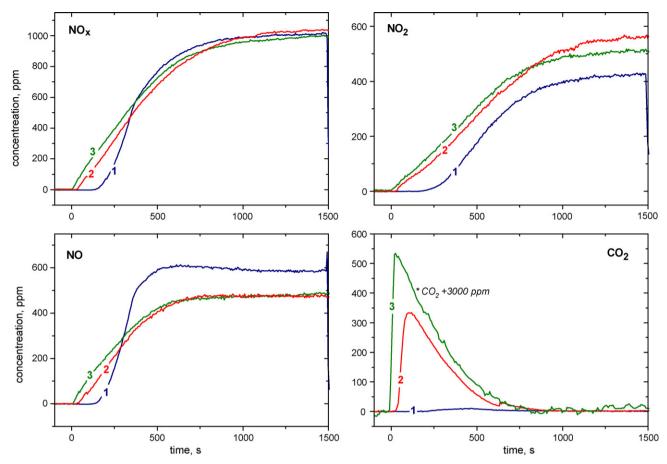


Fig. 8. NO_x, NO₂, NO, CO₂ outlet concentration vs. time on Pt-Ba/γ-Al₂O₃ catalyst determined by TRM experiments at 350 °C upon admission of NO/O₂ (curve 1), NO/O₂ on CO₂ pre-covered sample (curve 2) and NO/O₂/CO₂ mixture (curve 3).

detectable on the Ba/Al₂O₃ sample after several minutes of contact (Fig. 7A), while on the ternary system only nitrates are present after 30–60 s of contact (Fig. 7B).

TRM results obtained over Pt-Ba/Al₂O₃ sample upon NO/O₂ admission at 350 °C (Fig. 8) indicated that NO_x species were stored with a significant breakthrough (*i.e.* a period of complete NO_x uptake). After breakthrough (200 s), both NO and NO₂ were observed at the reactor outlet.

In the presence of CO_2 (traces 2 and 3 of Fig. 8) the NO_x breakthrough is significantly shortened and the NO_x adsorption process is slower. However, in spite of the significant reduction of the NO_x breakthrough, quantitative data obtained at saturation showed that the NO_x storage capacity upon admission of $NO/O_2/CO_2$ mixtures or upon admission of NO/O_2 over the CO_2 pre-covered catalysts was only slightly lower than that observed in the absence of CO_2 (Table 2). In all cases, the NO_x storage capacity of the ternary catalyst was markedly higher than that of the binary system.

In line with IR results, NO_x adsorption was accompanied by evolution of CO₂. A release of CO₂ was also observed during TPD that follow TRM experiments. This fact confirms that carbonate species had been only partially displaced during the NO/O₂ storage phase. All the above data concerning NO storage in the presence of oxygen on Pt-Ba/Al₂O₃ catalyst can

be summarized and interpreted as follows: (i) NO is activated over reactive surface oxygen ions of the Ba oxide phase (e.g. O^{2-} , O_2^{-}), while O_2 is dissociated by Pt sites and atomic oxygen transferred to the neighboring Ba sites; (ii) NO is thus stored primarily in the form of nitrites, which are then progressively oxidized to nitrates ("nitrite route") [9]. The close proximity between Pt and Ba, previously evidenced [9,12], will favor NO/O₂ storage through the "nitrite route". Pt is observed to promote both the formation of nitrites and their oxidation to nitrates. Moreover, Pt also promotes NO oxidation to NO₂, thus the above "nitrite" pathway operates simultaneously with the NO₂ storage through "nitrate route", already proposed for NO₂ adsorption.

When gaseous CO_2 is added to NO/O_2 mixture, CO_2 is immediately adsorbed to form carbonates, thus competing with NO for the surface Ba oxygen ions. Carbonates are then only partially displaced, so that the amount of nitrites formed is lower than in the absence of CO_2 . It appears therefore that "nitrite route" is in some extent inhibited by the presence of CO_2 . Notably, the NO_x breakthrough is significantly shortened in the presence of CO_2 , so that the extent of NO_x breakthrough can be tentatively associated with the occurrence of the "nitrite route". However, in the case of Pt-Ba/Al₂O₃ catalyst, NO can be oxidized to NO_2 by Pt and NO_2 can be stored in the form of nitrates through the "nitrate

route", which is not significantly affected by the presence of CO_2 , as previously shown.

4. Conclusions

The combined use of *in situ* FT-IR spectroscopy and the transient response method has provided complementary information which allowed the proposal of a pathway for NO₂ and NO/O₂ storage in the absence and in the presence of CO₂.

The picture obtained upon admission of NO_2/CO_2 mixtures or of NO_2 on the catalyst surface previously saturated with CO_2 strictly parallels the results collected in the case of NO_2 adsorption in the absence of CO_2 . The collected results indicate that, also in the presence of high amounts of CO_2 , Pt-Ba/Al₂O₃ catalysts are able to efficiently perform NO_x storage through a pathway that involves the formation of surface nitrate species ("nitrate route").

In the case of the storage of NO and O₂, two pathways operating simultaneously are proposed: the "nitrite route", that involves the initial formation of surface nitrite and their subsequent evolution to nitrates, and the "nitrate route", that involves NO oxidation to NO₂ over Pt and its subsequent adsorption on Ba phase in the form of nitrates. In the presence of CO₂, if "nitrite route" is in some extent inhibited due to the competition between NO and CO₂ for the surface oxygen sites of the Ba phase, "nitrate route" can proceed as in the absence of CO₂. It turns out that also in this case Pt-Ba/Al₂O₃ catalysts are able to efficiently perform NO_x storage.

References

- N. Miyoshi, S. Matsumoto, K. Katoh, T. Tanaka, J. Harada, N. Takahashi, K. Yokota, M. Sugiura, K. Kasahara, SAE Technical Paper 950809, 1995.
- [2] S. Matsumoto, Catal. Today 29 (1996) 43.
- [3] N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateishi, K. Kasahara, Catal. Today 27 (1996) 63.
- [4] H. Shinjoh, N. Takahashi, K. Yokota, M. Sugiura, Appl. Catal. B 15 (1998) 189.
- [5] N.V. Cant, M.J. Patterson, Catal. Today 73 (2002) 271.
- [6] C. Hess, J.H. Lunsford, J. Phys. Chem. B 106 (2002) 6358.
- [7] H.Y. Huang, R.Q. Long, R.T. Yang, Energy Fuels 15 (2001) 205.
- [8] P. Broqvist, I. Panas, E. Fridell, H. Persson, J. Phys. Chem. B 106 (2002)
- [9] I. Nova, L. Castoldi, F. Prinetto, G. Ghiotti, L. Lietti, E. Tronconi, P. Forzatti, J. Catal., 222/2 (2004) 377.
- [10] I. Nova, L. Castoldi, F. Prinetto, V. Dal Santo, L. Lietti, E. Tronconi, P. Forzatti, G. Ghiotti, R. Psaro, S. Recchia, Topics Catal., 30/31 (2004) 181.
- [11] F. Prinetto, G. Ghiotti, I. Nova, L. Castoldi, L. Lietti, P. Forzatti, Phys. Chem. Chem. Phys. 5 (20) (2003) 4428.
- [12] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.
- [13] L. Castoldi, I. Nova, L. Lietti, P. Forzatti, Catal. Today 96 (2004) 43.
- [14] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1986.
- [15] P. Pascal, Nouveau Traité de Chimie Minér ale, Masson, Paris, 1958.
- [16] J.C. Lavalley, Catal. Today 27 (1996) 377.
- [17] C. Morterra, G. Magnacca, Catal. Today 27 (1996) 497.
- [18] T. Szailer, J.H. Kwak, D.H. Kim, J. Szanyi, C. Wang, C.H.F. Peden, Catal. Today 114 (2006) 86.
- [19] D.H. Kim, Y.H. Chin, J.H. Kwak, J. Szanyi, C.H.F. Peden, Catal. Lett. 105 (2005) 259.
- [20] J. Szanyi, J.H. Kwak, J. Hanson, C. Wang, T. Szailer, C.H.F. Peden, J. Phys. Chem. B 109 (2005) 7339.
- [21] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, J. Catal. 204 (2001) 175.